Categories of Modules over an Affine Kac–moody Algebra and the Kazhdan–lusztig Tensor Product

نویسنده

  • MILEN YAKIMOV
چکیده

To each category C of modules of finite length over a complex simple Lie algebra g, closed under tensoring with finite dimensional modules, we associate and study a category AFF(C)κ of smooth modules (in the sense of Kazhdan and Lusztig [9]) of finite length over the corresponding affine Kac– Moody algebra in the case of central charge less than the critical level. Equivalent characterizations of these categories are obtained in the spirit of the works of Kazhdan–Lusztig [9] and Lian–Zuckerman [14, 15]. We prove an affine analog of a theorem of Kostant [13]: For any subalgebra f of g which is reductive in g the “affinization” of the category of finite length admissible (g, f) modules is stable under Kazhdan–Lusztig tensoring with the “affinization” of the category of finite dimensional gmodules (which is Oκ in the notation of [9, 10, 11]). In the particular case (f = g) this gives a direct proof of the finiteness result in [9].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categories of Modules over an Affine Kac–moody Algebra and Finiteness of the Kazhdan–lusztig Tensor Product

To each category C of modules of finite length over a complex simple Lie algebra g, closed under tensoring with finite dimensional modules, we associate and study a category AFF(C)κ of smooth modules (in the sense of Kazhdan and Lusztig [13]) of finite length over the corresponding affine Kac–Moody algebra in the case of central charge less than the critical level. Equivalent characterizations ...

متن کامل

Affine Jacquet Functors and Harish-chandra Categories

We define an affine Jacquet functor and use it to describe the structure of induced affine Harish-Chandra modules at noncritical levels, extending the theorem of Kac and Kazhdan [10] on the structure of Verma modules in the Bernstein–Gelfand–Gelfand categories O for Kac–Moody algebras. This is combined with a vanishing result for certain extension groups to construct a block decomposition of th...

متن کامل

Character Formulas for Tilting Modules over Kac-moody Algebras

We show how to express the characters of tilting modules in a (possibly parabolic) category O over a Kac-Moody algebra in terms of the characters of simple highest weight modules. This settles, in lots of cases, Conjecture 7.2 of Kazhdan-Lusztig-Polynome and eine Kombinatorik für Kipp-Moduln, Representation Theory (An electronic Journal of the AMS) (1997), by the author, describing the characte...

متن کامل

Vertex tensor category structure on a category of Kazhdan-Lusztig

We incorporate a category considered by Kazhdan and Lusztig of certain modules (of a fixed level , not a positive integer) for an affine Lie algebra, into the representation theory of vertex operator algebras. We do this using the logarithmic tensor product theory for generalized modules for a vertex operator algebra developed by Huang, Lepowsky and the author; we prove that the conditions for ...

متن کامل

9 D ec 1 99 8 Kazhdan - Lusztig conjecture for symmetrizable Kac - Moody Lie algebras . III Positive

2 Highest weight modules 4 2.1 Kac-Moody Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Integral Weyl groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Category of highest weight modules . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Enright functor for non-integral weights . . . . . . . . . . . . . . . . . . . . 11 2.5 Embeddings of Verma m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009